A novel missense mutation in SLC34A3 that causes hereditary hypophosphatemic rickets with hypercalciuria in humans identifies threonine 137 as an important determinant of sodium-phosphate cotransport in NaPi-IIc.
نویسندگان
چکیده
The present study describes two novel compound heterozygous mutations, c.410C>T(p.T137M) (T137M) on the maternal and g.4225_50del on the paternal allele of SLC34A3, in a previously reported male with hereditary hypophosphatemic rickets with hypercalciuria (HHRH) and recurrent kidney stones (Chen C, Carpenter T, Steg N, Baron R, Anast C. Pediatrics 84: 276-280, 1989). For functional analysis in vitro, we generated expression plasmids encoding enhanced green fluorescence protein (EGFP) concatenated to the NH2 terminus of wild-type or mutant human type IIc Na-Pi cotransporter (NaPi-IIc), i.e., EGFP-hNaPi-IIc, EGFP-[M137]hNaPi-IIc, or EGFP-[Stop446]hNaPi-IIc. The V446Stop mutant showed complete loss of expression and function when assayed for apical patch expression in opossum kidney (OK) cells and sodium-dependent 33P uptake into Xenopus laevis oocytes. Conversely, EGFP-[M137]hNaPi-IIc was inserted into apical patches of OK cells and into oocyte membranes. However, when quantified by confocal microscopy, surface fluorescence was reduced to 40% compared with wild-type. After correction for surface expression, the rate of 33P uptake by oocytes mediated by EGFP-[M137]hNaPi-IIc was decreased by an additional 60%. The resulting overall reduction of function of this NaPi-IIc mutant to 16%, taken together with complete loss of expression and function of g.4225_50del(V446Stop), thus appears to be sufficient to explain the phenotype in our patient. Furthermore, the stoichiometric ratio of 22Na and 33P uptake was increased to 7.1 +/- 3.65 for EGFP-[M137]hNaPi-IIc compared with wild-type. Two-electrode studies indicate that EGFP-[M137]hNaPi-IIc is nonelectrogenic but displayed a significant phosphate-independent inward-rectified sodium current, which appears to be insensitive to phosphonoformic acid. M137 thus may uncouple sodium-phosphate cotransport, suggesting that this amino acid residue has an important functional role in human NaPi-IIc.
منابع مشابه
TRANSLATIONAL PHYSIOLOGY A novel missense mutation in SLC34A3 that causes hereditary hypophosphatemic rickets with hypercalciuria in humans identifies threonine 137 as an important determinant of sodium-phosphate cotransport in NaPi-IIc
Jaureguiberry G, Carpenter TO, Forman S, Jüppner H, Bergwitz C. A novel missense mutation in SLC34A3 that causes hereditary hypophosphatemic rickets with hypercalciuria in humans identifies threonine 137 as an important determinant of sodium-phosphate cotransport in NaPi-IIc. Am J Physiol Renal Physiol 295: F371–F379, 2008. First published May 14, 2008; doi:10.1152/ajprenal.00090.2008.—The pres...
متن کاملOf men and mice: who is in control of renal phosphate reabsorption?
Renal phosphate excretion and serum level are critically determined by several sodium-dependent phosphate transporters expressed in the proximal tubule, among them NaPi-IIa and NaPi-IIc.1,2 In humans, mutations in NaPi-IIc (SLC34A3) cause hereditary hypophosphatemic rickets with hypercalciuria. In contrast, the role of NaPi-IIa (SLC34A1) in renal syndromes of hyperphosphaturia and nephrolithias...
متن کاملRenal-specific and inducible depletion of NaPi-IIc/Slc34a3, the cotransporter mutated in HHRH, does not affect phosphate or calcium homeostasis in mice.
The proximal renal epithelia express three different Na-dependent inorganic phosphate (Pi) cotransporters: NaPi-IIa/SLC34A1, NaPi-IIc/SLC34A3, and PiT2/SLC20A2. Constitutive mouse knockout models of NaPi-IIa and NaPi-IIc suggested that NaPi-IIa mediates the bulk of renal reabsorption of Pi whereas the contribution of NaPi-IIc to this process is minor and probably restricted to young mice. Howev...
متن کاملIdentification and functional analysis of a splice variant of mouse sodium-dependent phosphate transporter Npt2c.
Mutations in the SLC34A3 gene, a sodium-dependent inorganic phosphate (Pi) cotransporter, also referred to as NaPi IIc, causes hereditary hypophosphatemic rickets with hypercalciuria (HHRH), an autosomal recessive disorder. In human and rodent, NaPi IIc is mainly localized in the apical membrane of renal proximal tubular cells. In this study, we identified mouse NaPi IIc variant (Npt2c-v1) that...
متن کاملNovel NaPi-2c mutations that cause mistargeting of NaPi-2c protein and uncoupling of Na-Pi cotransport cause HHRH.
HEREDITARY HYPOPHOSPHATEMIC rickets with hypercalciuria (HHRH) is an autosomal recessive inherited disorder of mineral and bone metabolism. It is characterized by hypophosphatemia, rickets, and increased serum 1,25-dihydroxyvitamin D concentration, resulting in secondary absortive hypercalciuria and is also associated with renal calcification and renal stone disease (4, 8, 10, 11, 12, 14). HHRH...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Renal physiology
دوره 295 2 شماره
صفحات -
تاریخ انتشار 2008